Marine gravity anomaly from Geosat and ERS 1 satellite altimetry
نویسندگان
چکیده
منابع مشابه
Marine gravity anomaly from Geosat and ERS 1 satellite altimetry
Closely spaced satellite altimeter profiles collected during the Geosat Geodetic Mission (-6 km) and the ERS 1 Geodetic Phase (8 km) are easily converted to grids of vertical gravity gradient and gravity anomaly. The long-wavelength radial orbit error is suppressed below the noise level of the altimeter by taking the along-track derivative of each profile. Ascending and descending slope profile...
متن کاملGlobal marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate
[1] Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from ...
متن کاملDeriving 2hz Ers-1 Geodetic Mission Altimetry for Gravity and Marine Geoid Purposes
In the coastal zone (<25 km to the coast) altimetric gravity field determination degrades due to a combination of several factors, where the main reason is the degradation of the quality of the altimeter data. By starting out from the original waveform data and retracking the entire ERS1 GM mission using a highly advanced expert based system of multiple retrackers, the return time from both ope...
متن کاملStacked global satellite gravity profiles
Gravity field recovery from satellite altimetry provides global marine coverage but lacks the accuracy and resolution needed for many exploration geophysics studies. The repeating ground tracks of the ERS-1/2, Geosat, and Topex/Poseidon altimeters offer the possibility of improving the accuracy and resolution of gravity anomalies along widely spaced (∼40-km spacing) tracks. However, complete oc...
متن کاملGravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines
Gravity acceleration data have grand pursuit for marine applications. Due to environmental effects, marine gravity observations always hold a high noise level. In this paper, we propose an approach to produce marine gravity data using satellite altimetry, high-resolution geopotential models and harmonic splines. On the one hand, harmonic spline functions have great capability for local gravity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research: Solid Earth
سال: 1997
ISSN: 0148-0227
DOI: 10.1029/96jb03223